1-6 Mathematical Induction

Suppose that the following claim is made: For all natural num-
bers, 7, the natural number #° + 2n is divisible by 3. Is the claim
true? Is it false? To find out you might begin by examining several
cases. y
n=1: 1B42-1=3; 3 is divisiblg by 3.
n=2 242-2=12; 12 is divisible by 3.
n=3 34 2-3=233; 331s divisible by 3.

So far so good. - Now check the statement forn=4,n=>5,andn=6.
_What are your results? - , .

One thing is clear: You cannot possibly substantiate the claim for
all natural numbers n. Ozly a finite number of instances could be
checked. What you need, ‘then, is a method of proof which verifies
the claim for all natural numbers at once. The method of proof sought
is mathematical induction. )

Mathematical induction is based on simple characteristics of the
natural numbers. They are stated in the Axiom of Induction.

The pair of conditions in the Axiom of Induction uniquely deter-
mine the set of natural numbers. Notice that both conditions must be
satisfied for the Axiom of Induction to hold. The following example
will help to illustrate the point.
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For example, consider the following set T.
T=1{1,23}

Clearly 1 € T, but it is not true that k + 1 € T every time k€T, e.g.,
3c¢Tbut4 ¢ T. Thus T = N.

* LetT = {10, 11, 12, - - -}.

Clearly if k € T, then' k + 1 € T but 1 ¢ T. Thus, again, T » N.
The Theorem of Mathematical Induction follows directly.

Proof: Let T be the set of natural numbers for which P, is true.

1 € T because of i in Theorem 1-7.
k + 1 € T whenever k € T because of ii.

Thus T = N and P, is true for all » € N.

To apply the Theorem of Mathematical Induction you must do
two things: You must verify that Py is true. You must also verify
that Py, is true whenever Py is true.

EXAMPLE 1. For z a natural number, P, is the statement:

m + 2n is divisible by 3.

Prove P, true for all » ¢ N.
The proof is by mathematical induction.

i. Verify that P, is true.
P, : 13 + 2 -1 is divisible by 3.
P, is clearly true since 134+ 21 = 3.

ii. Verify that whenever P, is true for a natural number, say n = k, then
it is true for the next natural number, n = k + 1.

To carry out this portion of the argument, you must assume that
P, is true for some k € N. This assumption is the induction hypothesis.
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Assume Py is true; i.e., kX + 2k is divisible by 3. Next show that Py
implies Py, i.e., prove that Pry; must also be true; ie., (k+ 1) +
2(k + 1) is divisible by 3. First notice that

(k+ 17 + 20k +1) =k +3k2 + 3k + 1 + 2k + 2
(k* + 2k) + 3k* + 3k + 3
P(k) + 3¢k + k+ 1)

The symbol P(k) is used in the last line to stand for “k® 4 2k”.
It should not be confused with the symbol P, which stands for the
sentence “k® 4 2k is divisible by 3”. Similarly, P(k + 1) stands for
“+ 1P +2k+ 1)

Since P(k) is divisible by 3 and 3(k*+ k + 1) is divisible by 3,
P(k + 1) is also divisible by 3. Thus both conditions of the Theorem
of Mathematical Induction are satisfied. You may thus conclude that
n® + 2n is divisible by 3 for all n € N.

EXAMPLE 2. For n a natural number, P, is the statement:

Hm_nw».+w+...+=.h~R=|M|~.v..

Prove P, true for all n € N.

i. P, is true, since ﬁ = 1.
ii. Induction hypothesis:
Assume Py is true;ie, 1 +2 4+ -+ k = gm._hb

Prove that Px, follows from Py.

The left hand side of Pry1is 1 +2+ 3+ - -+ + k+ (k + 1). But this
is the left side of P, with 2+ 1 added. This suggests that a proof may
be made by adding (k + 1) to both sides of the true statement P;.

_kE+ D) +2(k+ 1)
2
_ G D +2)
2
_+N+...+w+®+5uQ«+CQ«N+_.+S

The last statement is Pxy;. Thus Py, follows from Py.
By the Theorem of Mathematical Induction P, is true for all » € N.
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EXAMPLE 3. For # a natural number, P, is the statement:
" . .

= A+pr>14np, p> -1

Prove P, true for all n € N.

i, Verify Pi.
Po:(l+pr21+1-p-

l+p>1+p, p> —1
Thus P, is true. .
ii. Induction Hypothesis.

Assume P, is true, i.e., (1 + p)* > 1+ kp. Now prove that the
truth of Py, follows from that of P;. The left hand side of the state-
ment Pry is (14 p)**' = (1 +p)(1 +p)*. The second -factor in
(1 + p)(1 + p)¥ is the left hand side of P;. This suggests that you may
be able to make the proof by beginning with P, and multiplying by
(1 + p). You know that l

(1+pF>1+kp
Since, 1 + p > 0 then
(A +pA+pfF 2> 1A+ k)1 +p)
or AQ+p)f>1+kp+p+kp=1+(k+ Dp+ kp™
Since kp?> > 0
L+ (+ Dp+ kgt 2 1+ (k+ Dp
Thus A+pP > 1+ G+ Dp+kpt> 1+ (k+Dp
or A+pr>14+(+ Dp
But this is Pr4:! Thus the statement P, is true for all n € N.

2
P

It is important to realize that both parts of the Theorem of Mathe-
matical Induction must be satisfied for P, to be true for all natyral
numbers n. For example, suppose P, is the statement

np+1), (=1

142434 +n="t0—+

141D, A =1,
- ¢ 5 1s true.

P, is true since “1 =

~In this case, however, you cannot conclude that whenever P, is
true, Py, is also true because there is no general iww\ to produce
Pi,: from P,. Thus P, is not true for all n € N. The way to disprove
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this statement is to produce a counterexample, i.e., a natural number
for which P, is not true. P;is not true because

33+1) (3i1)

6-1+2+3;é ) 7 =6+1=1.
On the other hand suppose that P, is the statement
142434 4n=200D 4y

Then you can show 'that if Py, is true, Py must be true also. How-
ever, it is.impossible to show that P, is true for any n much less for
n=1

Exercises
A === T Exercises 1-12 P, is given. Prove by Mathematical Induc-
tion that P, is true for all #n € N.
L1+4+3454+--+@n-D=n
2.24+4+46+---+2n=nn+1)

1 1 1 n
Sttt T At
4-'2'+E'2+' +§;= o
g, 1_1_1_ . _1_1-0r
"2 4 8 2 7
6, (b~ b)) + (bz b+ + (bn — bugs) = by — bapn

. L1 _g1=@r

7.5+5 3+5 32 +53n—1_5 1—3%

B 9.a+aq+ag+-- +aq‘1-~al1 “a,q€R, g1

10. a+ (a+d)+ (@+2d) + - + [a+(n— 1d] =
n[(za‘l‘("—‘l)d]a dER
2 3

11, »® — nis divisible by 6

12, 54 24 oo 4t = M0ED@ED

13. Prove that the sum of n positive integers is positive. (Hint:
See Section 1-3, Postulate 17.)

14, Prove that the product of »n positive integers is positive.
(Hint: See Section 1-3, Postulate 18.)

15. Prove that if oy < x1, X1 < X, xgk < X3y X3 < Xty ovvy Xy <
Xy, then x, < x,. (Hint: Use Theorem 1-4.)
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